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Abstract: A technique is developed for linking the methods of discrete dislocation dynamics simulation and finite 
element to treat elasto-plasticity problems. The overall formulation views the plastically deforming crystal as an elastic 
crystal with continuously changing dislocation microstructure which is tracked by the numerical dynamics simulation. 
The FEM code needed in this regard is based on linear elasticity only. This formulation presented here is focused on a 
continuous updating of the outer shape of the crystal, for possible regeneration of the FEM mesh, and adjustment of the 
surface geometry, in particular the surface normal. The method is expected to be potentially applicable to the nano- 
indentation experiments, where the zone .,around the indenter-crystal contact undergoes significant permanent 
deformation, the rigorous determination of which is very important to the calculation of the indentation print area and in 
turn, the surface hardness. Furthermore, the technique is expected to account for the plastic history of the surface 
displacement under the indenter. Other potential applications are mentioned in the text. 

1. INTRODUCTION 

In the past few years, 3D discrete dislocation dynamics models have been developed in order to study the 
plastic behavior of both fee [l] and bee [2] single crystals. These models bridge the gap between the now 
well-known behavior of a single dislocation [3-41 and the cooperative effects of a large population of 
dislocations on the macroscopic behavior of a single crystal. The length scale at which the simulation is 
performed is large enough for the theory of elasticity of dislocation fields to remain valid. The dislocation 
lines are discretized in pure edge and screw elements which have their own long-range stress field. The total, 
applied plus long-range, stress field determines the course of motion of these dislocation elements. Linking 
the mesoscopic simulation and continuum mechanics is achieved by calculation of continuous field variables 
from the simulation results. The way the simulation is conducted makes it straightforward to find the stress 
fields inside the crystal. In order to extract a smooth plastic strain field, and in turn, determine the shape of 
the deforming crystal, other mathematical conditions need to be ‘satisfied. For example, the incremental 
plastic strain field is obtained by averaging the discrete incremental strain due to the motion of individual 
dislocation elements in a control volume. In order to obtain a spatially smooth plastic strain field within the 
simulated crystal space, it is required that the simulation volume have a size scale that is much larger than the 
size of the averaging volume. Unless this condition is satisfied, the smoothing of the plastic strain field will 
be strongly dependent on the choice of such control volume, and in turn, this strain field can not be integrated 
to yield a meaningful displacement field, If the purpose, however, is to determine the outer shape of the 
crystal, i.e., the deformed boundary, the present work shows that there may not be a need to obtain a smooth 
plastic strain field by performing averaging in the bulk of the crystal. Determination of the outer boundary 
shape of a finite crystal is necessary if part the crystal undergoes finite deformations, since the formulation 
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(whether discrete or continuum) in this case requires continuous update of the boundary geometry, 
essentially, the changes in both magnitude and unit normal of differential surface elements. These 
requirements are critical to problem such as nano-indentation, where localized finite deformations take place 
around the contact zone. 

In this paper, a technique is developed to establish the linkage between the discrete simulations and the 
continuum theory of deformation, focusing only of the geometry of the boundary of the deforming crystal. 
Essentially, an incremental formulation of the dislocation dynamics problem is achieved which is based on 
the following ideas: 
1) the simulated crystal is an elastic crystal with moving dislocation and the dynamics of the dislocation 

system is governed by the both long-range and applied stress fields which are fully determined by the 
linear elasticity theory; 

2) as dislocations move and cause plastic distortion, the boundary geometry is rigorously and incrementally 
updated; 

3) updating the boundary geometry is not based on integrating a smooth distortion field in the bulk, but 
rather by considering only the permanent deformation at the surface. Such deformation is fully 
determined by the motion of the dislocation elements close to the boundary; 

4) the stress field influencing the dynamics of the dislocation system, specifically that part associated with 
boundary loading, is found based on continuously updated boundary geometry. 
The next section exposes the basis of the 3D discrete dislocation modeling. The scheme of discretization 

of space and dislocation lines and the dynamics of the dislocation ensemble are described. In section 3, the 
boundary conditions imposed on the simulated volume are given. It is also shown how the simulation is 
conducted for both bulk and finite volume crystals undergoing infinitesimal plastic deformations. Section 4 
includes a generalization of the principle adopted in the previous section and a proposition of a method to 
take into account the permanent deformation generated by the dislocation motion. Some remarks are then 
given on the utilization of this work within the context of multi-scale modeling of the plastic deformation. 

2. THE DISCRETE DISLOCATION MODELING 

2.1 Discretization 

The discrete dislocation dynamics model described here is based on discretization of the simulated 
crystal space into a lattice with interior points between which the dislocation lines are presmissible. This rule 
minimizes the number of dislocation segments to deal with during the simulations. A natural way to 
discretize the space consists of defining a discrete network of points spread on a lattice similar to the crystal 
lattice but with a larger size. The size of this lattice is chosen so that two neighboring points are separated 
from a distance equal to the minimum distance below which two dislocation elements of opposite sense can 
not coexists without instantaneously annihilating each other. This distance can be inferred from experiments 
[5] and generally it is found to be on the order of 10xb where b is the magnitude of the Burgers vector. Since 
this length scale represents the minimum possible distance between two interacting dislocation elements, the 
use of linear elasticity solutions for dislocation stress fields is justifiable since this separation is reasonably 
larger than the dislocation core size. 

The dislocation lines are discretized into pure edge and screw segments, which are fitted to the lattice. 
This specificity simplifies the rules to use for the dislocation interactions since edge and screw segments are 
perpendicular to one another. For fee simulations, it is needed to define eighteen discrete vectors (twelve 
<112> edge and six <llO> screw) for dislocation residing on twelve { 111) slip planes. For a bee crystal, 
however, twelve <112> edge and four ~11 l> screw vectors are needed to define the twelve { 110) slip planes. 
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2.2 Stress Computation 

The dislocation segments move in reaction to the effective shear stress resolved on their glide plane and 
computed at their center. This stress r* is written as 

z* = [a b x l].b + T,, - q,eierls, (1) 
in which b and 1 are respectively the Burgers and the line vectors of the dislocation segment. Zpeieris 
corresponds to the lattice friction generated by the Peierls forces, and Tit represents the line tension effect. For 
fee simulation this term is computed using the local curvature of the dislocation line 

aGb 
71, = R ’ 

(2) 

where G is the shear modulus, R is the local radius of curvature and a is a parameter defined experimentally. 
For bee simulation, the line tension is computed using the gradient of the self energy as proposed by Devincre 
and Condat [6]. cr is the local stress tensor computed at the center of each segment. Using the superposition 
principle, see Lubarda et al. [7], this tensor is decomposed into two parts 

0=6+3:, (3) 
where the stress component & is contributed by all other dislocation segments within the simulated box, as if 
they were in an infinite medium. It is computed using the de Wit formula [8], which is written in detailed in 
[9]. A method to expedite the computation is described in [lo]. The field E is a stress component needed to 
enforce the boundary conditions. This component will be detailed in the following sections depending on the 
situation. 

2.3 Kinetics 

At a given time step, the dislocation configuration is frozen and the stress is computed on the middle 
points of each dislocation segment. The segments then move according to the following phonon drag viscous 
law 

b 
V=T*-, 

B 
where b is the magnitude of the Burgers vector, z* the effective resolved shear stress defined previously, and 
B the phonon drag coefficient. 

All three-dimensional possible interactions among the dislocation segments such as the annihilation and 
junction formation, as well as cross-slip are taken into account. Annihilation events occur when two 
dislocation segments of the same Burgers vectors but with opposite signs occupy the same space on the 
discrete lattice. The common part is then removed and the two lines are re-ordained. Cross-slip events are 
possible for screw segments only and depending on a thermally-activated probabilistic law. If cross-slip is 
allowed, a screw segment is permitted to end its flight on a different slip system. Junction formation may 
occur when two dislocation segments that do not belong to the same glide plane meet in a 3D configuration. 
An energy criterion is used to determine if it is favorable to create a sessile junction and if so, both segments 
are blocked simulating a Lomer-Cottrell lock. Those junctions create the hard skeleton of the dislocation 
microstructure. They can be destroyed if the local.resolved shear stress applied on at least one of those sessile 
segments is above a critical value found to be 12.5 MPa for fee materials by Devince and Kubin [ 111. In the 
case of bee materials, the stress needed to unzip a junction is not well known yet and the problem is currently 
under investigation. 
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3. THE BOUNDARY CONDITIONS 

3.1 Overview 

Early simulations were performed without serious attention to the conditions on the boundary of the 
simulation volume. The purpose was to study the behavior of a bulk crystal and the simulation results were 
supposed to be statistically representative of the behavior of a much larger crystal. For simplicity, cubic 
simulation volumes were considered. The size of the cube was chosen to be reasonably larger than the 
wavelength of any expected dislocation pattern, e.g., cells. Inferring from experiments, simulation volume 
sizes of about 15 and 20 micrometers were considered for fee and bee crystals, respectively. In principle, only 
a minimum bound should be imposed on the size of the simulation box for the simulation results to be 
meaningful. The remotely applied stress field 5 has been considered uniform. The effects of truncating the 
crystal at the surface of the simulation volume were eliminated by extracting information from a sphere 
centered within the simulation space, and whose diameter is smaller than the cube size [12]. Recently, a self- 
consistent formulation of both traction and flux boundary conditions of a simulated bulk crystal space was 
completed [ 131. 

If the purpose is to directly compare dislocation microstructures to those observed experimentally, a 
finite crystal should be considered. In this case, the boundary of the simulation volume is the physical crystal 
surface. The traction boundary condition in this case must be determined by the experimental conditions. The 
absorption and/or emission of dislocations from the crystal surface gives rise to the boundary condition for 
the dislocation field. Therefore, the primary consideration in the case of bounded crystals is to structure the 
simulation models to deal with complex boundary conditions. The main objective of the present work is 
indeed to outline the method proposed to deal with this kind of problem. 

3.2 Finite Crystal Loading 

Consider a simulation volume Q which has an arbitrary shape as pictured in figure 1. Assume that this 
volume contains dislocations and is submitted to forces Fapp on its boundary da. The superposition principle 
is used to determine the stress field CY to be applied on the dislocation segments. As explained in the 
previous section (see also reference [12]), this stress field is decomposed into two contributions 6 and 5 . 
The first contribution 6 is the stress field generated by the dislocations as if they were in an infinite medium. 
However, the residual traction Fdls’ left by dislocations on the boundaries of the simulated volume needs to be 
canceled for the dislocation stress field alone to satisfy traction-free boundary conditions. It is therefore 
necessary to solve a problem where forces Fapp- Fdis’ are applied on the boundary dQ of volume Q. The stress 
field 5 solution of this problem can be computed numerically using the boundary element or the finite 
element method. Here, a finite element algorithm is implemented and coupled with the discrete simulations. 
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Figure 1: Decomposition of the boundary problem into two sub-problems. The stress field applied to the dislocation segments is 
given by superposition: (T = 6 + 5 . 

An application of this method has already been performed on the simulation of the nano-indentation test 
using the commercial FEM code CASTEM [14]. The dislocation microstructure generated under the 
application of a spherical indenter on a pure [OOl] single crystal of copper has been simulated and directly 
compared to the experimental one. The simulated box consisted of a 2 microns large cube for which a part of 
the top surface was submitted to the parabolic Hertz loading corresponding to a spherical contact whereas the 
remaining top surface was imposed to be traction free. A set of nucleation rules defining the shape, size and 
location of the dislocation loops generated during the indentation process was determined using experimental 
data. The goal being to compare the simulated dislocation microstructure to the actual experimental one, the 
experimental conditions relevant to the thin foil extraction and the observation techniques have also been 
numerically reproduced. Once performed, the comparison showed a good accuracy between both the shape 
and size of the plastic volume. These initial results indicate that the analysis of indentation induced plasticity 
on the basis of dislocation mechanics is a promising approach. However, it should be noted that the 
developed model has its own limitations in studying the nano-indentation test. 

3.3 Limitations of the Method 

The method described above, devised to account for the boundary conditions in the discrete dislocation 
code, is limited by being restricted to elastic deformation only. Indeed, in the case of the simulation of the 
nano-indentation the numerical code was not able to give a value of the hardness -as measured 
experimentally (force divided by the area of the indent print)- since the indent print could not be simulated. In 
fact, all the finite element solutions are always defined on the same geometry of the volume i.e. the boundary 
dQ does not change with loading, due to the fact that dislocations were envisioned to move in a linearly 
elastic solid with no account for permanent deformations, When these defects approach the boundary of the 
simulated volume, they were systematically eliminated from the simulation and no history of the deformation 
is kept. In other words, since the plastic deformation corresponding to the steps created by the outgoing 
dislocations is not simulated, the boundary of the volume remains the same from the beginning to the end of 
the simulation. In the case of the nano-indentation simulation, this means that the size of the indent print at a 
given indentation depth is just linked to the dislocations which are still inside the volume and don’t take into 
account all the dislocations which have disappeared on the boundary surfaces. 

Based on the previous argument, accounting for the plastic deformation of the finite crystal in the hybrid 
code would allow access to information that is essential to comprehension of the nano-indentation test. 
Examples are the indent size and shape, the hardness and the unloading curve. More generally, such an 
implementation would be a paradigm for linking between the mesoscopic and macroscopic scales. 
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4. CONSIDERATION OF PLASTIC DEFORMATION 

4.1 Problematic and intuitive solution 

A segment of length L, moving on a distance dx at a velocity v, over the time step 6t sweeps an area 
dA=L.dx which gives raise to the incremental shear strain Ay given by the Orowan law 

Ay = p,bv& = bbdx = bv, 

in which V is the volume within which this plastic deformation occurs. The plastic distortion increment is 
then deduced from the shear strain on all the glide systems, using the relation 

APi = xbinjAy. 
segments 

The plastic strain and the rotation increments are deduced from equation (6) by taking the symmetric and 
skew parts of ApP, respectively. Equation (6) applies to produce an averaged plastic distortion at a continuum 
point in a large crystal. Within the simulation framework this continuum point is just the simulation volume, 
if the purpose is to simulate a bulk crystal. If a bounded crystal is to be simulated, caution must be exercised 
when applying equation (6), i.e., in generating a smooth plastic distortion field whose local value is found 
using that equation. The reason is that, the volume V must be much smaller, by at least an order of 
magnitude, than the size of the simulated crystal. However, if the simulated crystal has at least one dimension 
on the order of the size of volume necessary to apply equation (6), then constructing a smooth plastic 
distortion field is meaningless. In this case, the simulated crystal can not be dealt with as a continuum elasto- 
plastic solid. Specifically, the boundary value problem can not be solved by, say, an FEM method, given the 
fact that the plastic strain field is calculated from the simulations. An attempt has been made by Lemarchand 
et al. [15] to construct smooth plastic distortion fields from the evolution of the simulated dislocation 
ensemble in a bulk crystal. Here we approach this problem from a different angle, and the formulation 
presented here shows that it may be possible to avoid constructing a smooth plastic distortion field using the 
simulation information. 

The crystal is viewed here to be elastic at all times, and the motion of dislocations can be viewed in two 
ways; introduction of plastic strain increments which give rise to increments in the elastic fields, or a 
transition from one elastic state to another. In either view, the plastic distortion associated with motion of 
dislocations is manifested in the change of the elastic state of the crystal. Assume that we know the state of 
stress and elastic distortion at time t, and following minor rearrangement of the dislocation structure, it is 
required to determine the new stress and distortion fields in the crystal at t+&. One approach is to use the 
incremental plastic distortions (eigenstrain) in a formal elasticity solution and obtain a stress component, 
which represents the difference between the stress states at t and t+&. Associated with this stress increment is 
an elastic distortion increment, which again is the difference between the elastic distortion states at t and t+6t. 
In this manner, the current elastic state is dependent on the history of plastic deformation. However, as 
explained previously, a quasi-continuous plastic strain field must be constructed. 

Another approach is to determine the current elastic distortion and stress states directly from the current 
dislocation content of the crystal, by considering the dislocation structure to be a state variable. This is 
consistent with the notion that the history of a plastically deforming crystal is a sequence of elastic crystals, 
and the motion of dislocations yields the transition from one crystal to the other within this sequence. In this 
way, the plastic distortion ApP, as defined in equation (6), need not be taken into account in generating the 
stress field of in the crystal, as long as the dislocation content is known. This notion fits quite well within the 
structure of the method of dislocation dynamic simulation. However, the question to be asked is as follows: 
can one recover a meaningful displacement field in the crystal, and can this field exist everywhere in the 
dislocated crystal? This question is answered in the rest of this presentation. 
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4.2 A Proposed Boundary Solution 

The theory of continuous distribution of dislocations is recalled here; see for example Mura [16]. In this 
classic formulation, total crystal distortion, PT is decomposed into three components (see Figure 2), 

pi =p; +p; +p;, (7) 
in which p” is an elastic distortion associated with the boundary load, pd is the elastic distortion due to 
dislocations, and pp is the plastic distortion. For the case of discrete simulations, the increments of the later 
are given by dirac-delta distributions localized on the dislocation lines. 
The compatibility condition for total distortion is written in terms of the dislocation density tensor a and the 
plastic distortion pp as follows: 

eikl (Pz,k + Pi,, > = aij + ei$$,k = 0 9 63) 

where p” is curl-free, and eiki is the permutation tensor. Integrating (8) over the entire volume and using 
Gauss theorem, 

l(aij +ei,fi~,,).dV=~~ij.dV+ jc$.dS (9) 
Q a di2 

where a; = e,,n,$ is the surface dislocation density tensor. Equations (8) and (9) are valid in a rate form. 

The total distortion field is derivable from a continuous displacement field (so is p” since it is associated with 
boundary traction FaPP). This displacement field can be constructed in the following manner, 

j-du =u(B)-u(A) = j&+3’ = jdx.(jY +pd +jIp). (10) 

The integral is independenyof the path followeyfrom poii: A to B in the crystal. The displacement field 
constructed in this way is unique if the integral in (10) taken over a closed line identically vanishes. Also, the 
points A and B can be any two points on the surface of the crystal. 

Fdisl u plast 

Figure 2: The total distortion is the summation of the elastic distortion field p” generated by the applied load, the distortion field pd 
generated by the dislocations (which depends on their position) and the plastic distortion field pp. 

4.2.1 A crystal with bulk dislocations 

Assume that the plastic distortion field is vanishing on the crystal surface. From equation (lo), the 
difference between the displacements of two points on the surface is given by 

Idu = u(B) -u(A) = jdx.(jl’ + pd), (11) 
AB(dR) AWW 
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which implies that the elastic distortion field due to the presence of dislocations can be integrated on the 
surface to yield the shape of the crystal. In other words, given only the dislocation content of the crystal it is 
guaranteed that the outer shape of the crystal is uniquely determinable. Within the framework of simulations, 
superposition of the elastic distortion fields calculated using conventional elasticity solution can be used for 
this purpose. Equation (11) also implies that 

f dx.pd =O, 
c(m) 

(12) 

for any closed line C on the surface of the crystal. It is important to mention here that the component pd is not 
generally integrable in the bulk of the crystal. Its integration along a closed line yields the resultant Burgers 
vector of all dislocations passing through any area bounded by this line. See Figure 3 for an illustration. 

G-4 @I 
Figure 3: Integration of pd doesn’t give a unique displacement field in (a) whereas it gives a meaningful field when the path is 
chosen around a region containing a zero net Burgers vector. 

The general conclusion to be made here is as follows: 
“if a closed surface can be found in a plastically deformed crystal such that the plastic distortion is vanishing 
everywhere on this surface, it is possible to uniquely determine the shape of that surface at all times, knowing 
only the elastic distortion field created by dislocations at all points on that surface. Also, the resultant Burgers 
vector of all dislocations threading an arbitrary open area on this surface is equal to zero”. The second part of 
this conclusion is satisfied if dislocations do not penetrate this surface at all. 

4.2.1 Taking into account the plasticity at the sw$aces 

As implied by equation (9), a free surface can store dislocations, the tensor density of which is given by 
ai = e,,n,P; . The rate form of equation (9) is written as 

I(ciij +e,,&,).dV = j&,.dV+ l&;.dS = 0 
n Q dQ 

(13) 

which can be thought of as a conservation law of the total Burgers vector in a deforming crystal. Equation 
(13) means that during plastic deformation the volume and bulk of the crystal exchange dislocations, 
however, the total sum of their Burgers vector is identically invariant. This can be easily visualized by 
imagining and edge dislocation (in a two-dimensional crystal) being sucked into the surface. While the bulk 
becomes dislocation-free, a step is created on the crystal surface, which carries the same Burgers vector. 
However, this is not the only mechanism of change of both populations. There is a difference though between 
bulk and surface dislocations. The former are associated with a stress field, and latter are not, i.e., surface 
dislocations are completely impotent. One more difference is that, the line sense of a surface dislocation 
always lies in the crystal surface, i.e., orthogonal to the surface normal. 
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When dislocations reach the boundary d&2, their motion generally create steps on the surface. Those steps 
are essentially a result of non-vanishing plastic distortion at the crystal surface. Indeed they are closely 
connected to a surface displacement gradients, see the previous definition of the surface dislocation tensor. In 
order to find the shape of the distorted crystal in this case, those steps must be taken into account. 

Let us denote the displacement gradient associated with surface steps by p”. In this case, equation (10) 
can be rewritten in the form 

[du=u(B)-u(A)= j’dx.pT = Jdx.@ +fld +sS). (14) 
AB AB AB 

The integration can only be performed on the outer surface of the crystal. Note that pd cannot be integrated 
alone on this surface but the sum (fld + p”) can, and its integration over a line from A to B yields the 
differential displacement between these two points resulting from the dislocation field alone. 

Implementation of these concepts within the framework of dislocation dynamics simulations can be done 
incrementally. Over a certain period of time, the change in the surface dislocation density is related to the 
incremental change in stress-free surface displacement gradient (due to surface steps) by 

aALl; 
Aai = eilkn,Afii, = eilkn, - . 

3% 
The problem will be solved when AaS is determined everywhere on the 

boundary d&2. For each dislocation, the increment of the plastic distortion is considered to be localized on the 
dislocation line itself with the following expression 

Aps = (vdt xl)@ b or, fi; = e,v,l,bj (15) 
This term is completely determined by the geometry of the interaction of the outgoing dislocation at the 
boundary. Figure 4 shows a schematic of one of these events. 

Figure 4: Scheme of the intersection of a dislocation line and a boundary surface. 

A dislocation line has reached the surface and generated a slip trace there. As shown in that figure, the 
velocity of the point P, where the dislocation line intersects the crystal surface, determines the rate of creation 
of the slip trace at the surface. The velocity of point P, VP can be interpreted as the velocity at which points on 
both sides of the slip plane are shifted by an amount b relative to each other. The trace length created on a 
time increment 6t is then AL = v&t. This length indeed represents a surface dislocation. One can then define 
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a similar length for each slip system. The tensor product of this length and the Burgers vector gives rise to a 
contribution to the surface dislocation density tensor. For a surface element AS in the neighborhood of some 
point M on the crystal boundary, the oriented dislocation length per unit area, which is accumulated over time 
6t is given by 

c AL 
Al= - 

all intersections As ’ 

so that the contribution from all the systems to the increment of Aa” can be written as 

Aa” = c 
tic(‘) @b(i) or Aa; = &lf’bj” . 

all slip systems system i=l 

(16) 

(17) 

The incremental surface distortion due to creation of surface dislocations in the neighborhood of a point M on 
the crystal surface is related to the incremental change in the surface dislocation density tensor by 

aALl; 
Aa; = eilknlAfiij = eilkn, - 

ax, 
which is a system of 9 equations for 9 unknowns gradient components. Once solved for Apij, the latter can 
be substituted into equation (14) which can then be integrated to yield the incremental displacement field on 
the crystal surface. 

The overall framework can be implemented as follows: 
1) divide the surface into small elements; 
2) track the creation of surface dislocations over incremental time periods; 
3) calculate the incremental plastic distortion from the incremental surface dislocation density; 
4) update the crystal boundary shape by integrating the incremental form of equation (14); 
5) update the FEIM mesh and apply the next boundary load increment; 
6) calculate the long-range stress field and the stress field due to boundary load; 
7) update the dislocation microstructure using dynamic simulations; 
8) repeat steps 1) through 7). 

5. CONCLUDING REMARKS 

The notion that a plastically deformed crystal is an elastic crystal with moving defects is the basis of the 
present formulation. This notion is in fact naturally built in the method of dislocation dynamics simulation. 
The most important consequence of dealing with the crystal from this point of view is that the distortion field 
in the crystal can be determined by the spatial distribution of the dislocation elements, exactly in the same 
manner the elastic stress field is found. In other words, the change in plastic distortion of the crystal is 
manifested in the form of elastic distortion changes. However, generally speaking, neither the plastic nor the 
elastic distortions is individually integrable to yield a meaningful displacement field. However, only under 
certain conditions the integrability criterion is satisfied and it is possible to generate a meaningful 
displacement field only at the crystal surface. A displacement field is constructed on the crystal surface which 
has two components; an elastic component fully determined by the bulk dislocation structure, and a plastic 
component which is determined by surface dislocations. The later dislocation category simply represents the 
net creation of surface steps on the crystal as dislocations touching the surface glide on their slip planes. As 
shown in the last section, the method developed here does not rely on constructing or integrating a smooth 
plastic strain field. 

When implemented in discrete dislocation codes, the method described here will allow the creation of a 
full hybrid code linking the actual deformation state of any single crystal to the behavior of the dislocation 
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moving inside the simulated box. Direct results can be performed on the simulation of the nano-indentation 
test for which both the hardness and the unloading curve can be investigated by the new numerical code. 
Another direct application of the code can be done on the analysis of problems such as cavities growth. 

The hybrid code can also be viewed as a usual finite element code for which the plastic strain evolution 
law has been removed and replaced by the dislocation dynamics simulation. 
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